This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "ds/lazysegtree.hpp"Lazy segment tree can handle range queries with range updates under a monoid in $\mathcal O(\log n)$ time. Example monoid:
struct RangeAffineRangeSum {
using T = array<int, 2>;
using F = array<int, 2>;
static T id() { return {0, 0}; }
static F fid() { return 0; }
static T op(T l, T r) { return {l[0] + r[0], l[1] + r[1]}; }
// l is applied later than r
static F comp(F l, F r) { return {l[0] * r[0], l[0] * r[1] + l[1]}; }
// return false to force update children (segment tree beats)
static bool map(F f, T &x) {
x[0] = x[0] * f[0] + x[1] * f[1];
return true;
}
};
LazySegTree<M>(int n)
LazySegTree<M>(const vector<T> &v)
v
LazySegTree<M>(int n, Gen gen)
gen(i)
void set(int p, T x)
p to be x, consider using operator[]
void mul(int p, T x)
p (denoted as a[p]) to be M::op(a[p], x)
T operator()(int l, int r) or T prod(int l, int r)
[l, r)
void apply(int l, int r, F f)
f to the range [l, r)
int max_right(int l, G g)
r such that g(prod(l, r)) == true. For requirements of g, please visit
ac-library’s segtree docs
int min_left(int r, G g)
l such that g(prod(l, r)) == true. For requirements of g, please visit
ac-library’s segtree docs
vector<T> to_vec()
#pragma once
#include "../other/update_proxy.hpp"
// M: T M::id(), F M::fid(), T op(T, T), F comp(F, F), bool map(F, &T)
template<class M> struct LazySegTree {
using T = typename M::T;
using F = typename M::F;
int n, lg, m;
vector<T> t;
vector<char> upd;
vector<F> lz;
LazySegTree() = default;
LazySegTree(int _n) :
n(_n), lg(_lg(n)), m(1 << lg), t(2 * m, M::id()), upd(m),
lz(m, M::fid()) {}
template<class G> LazySegTree(int _n, G &&gen) : LazySegTree(_n) {
for (int i = 0; i < n; i++) t[i + m] = gen(i);
for (int i = m; --i;) update(i);
}
template<class V>
LazySegTree(const V &v) :
LazySegTree((int)v.size(), [&](int i) { return T(v[i]); }) {}
vector<T> to_vec() {
vector<T> r(n);
for (int i = 0; i < n; i++) r[i] = (*this)[i];
return r;
}
void set(int p, const T &x) {
assert(0 <= p && p < n);
push_to(p), t[p + m] = x, update_from(p);
}
void mul(int p, const T &x) {
assert(0 <= p && p < n);
push_to(p), t[p + m] = M::op(t[p + m], x), update_from(p);
}
auto operator[](int p) {
assert(0 <= p && p < n);
UpdateProxy up(t[p + m], [this, p]() { update_from(p); });
return push_to(p), up;
}
T get(int p) { return (*this)[p]; }
T operator()(int l, int r) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return M::id();
int li = __builtin_ctz(l + m), ri = __builtin_ctz(r + m);
push_to(l, li), push_to(r - 1, ri);
T sml = M::id(), smr = M::id();
for (l += m, r += m; l < r; l >>= 1, r >>= 1) {
if (l & 1) sml = M::op(sml, t[l++]);
if (r & 1) smr = M::op(t[--r], smr);
}
return M::op(sml, smr);
}
T pref(int r) { return (*this)(0, r); }
T suff(int l) { return (*this)(l, n); }
T prod(int l, int r) { return (*this)(l, r); }
T all_prod() const { return t[1]; }
void apply(int p, const F &f) {
assert(0 <= p && p < n);
push_to(p), M::map(f, t[p + m]), update_from(p);
}
void apply(int l, int r, const F &f) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return;
int li = __builtin_ctz(l + m), ri = __builtin_ctz(r + m);
push_to(l, li), push_to(r - 1, ri);
for (int l2 = l + m, r2 = r + m; l2 < r2; l2 >>= 1, r2 >>= 1) {
if (l2 & 1) all_apply(l2++, f);
if (r2 & 1) all_apply(--r2, f);
}
update_from(l, li), update_from(r - 1, ri);
}
template<class G> int max_right(int l, G &&g) {
assert(0 <= l && l <= n);
assert(g(M::id()));
if (l == n) return n;
push_to(l), l += m;
T sm = M::id();
do {
for (; l % 2 == 0; l >>= 1);
if (!g(M::op(sm, t[l]))) {
while (l < m) {
push(l), l = l << 1;
if (g(M::op(sm, t[l]))) sm = M::op(sm, t[l++]);
}
return l - m;
}
sm = M::op(sm, t[l++]);
} while ((l & -l) != l);
return n;
}
template<class G> int min_left(int r, G &&g) {
assert(0 <= r && r <= n);
assert(g(M::id()));
push_to(r - 1), r += m;
T sm = M::id();
do {
for (r--; r > 1 && r % 2; r >>= 1);
if (!g(M::op(t[r], sm))) {
while (r < m) {
push(r), r = r << 1 | 1;
if (g(M::op(t[r], sm))) sm = M::op(t[r--], sm);
}
return r + 1 - m;
}
sm = M::op(t[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
// clang-format off
static int _lg(int n) { int l = 0; while (1 << l < n) l++; return l; }
// clang-format on
void update(int p) { t[p] = M::op(t[p << 1], t[p << 1 | 1]); }
void update_from(int p, int l = 0) {
p += m;
for (int i = l + 1; i <= lg; i++) update(p >> i);
}
void all_apply(int p, const F &f) {
bool ok = M::map(f, t[p]);
assert(p < m || ok);
if (p < m) {
lz[p] = M::comp(f, lz[p]), upd[p] = true;
if (!ok) push(p), update(p);
}
}
void push(int p) {
if (!upd[p]) return;
all_apply(p << 1, lz[p]), all_apply(p << 1 | 1, lz[p]);
lz[p] = M::fid(), upd[p] = false;
}
void push_to(int p, int l = 0) {
p += m;
for (int i = lg; i >= l + 1; i--) push(p >> i);
}
};
#line 2 "ds/lazysegtree.hpp"
#line 2 "other/update_proxy.hpp"
// clang-format off
template<class T, class Cb> struct UpdateProxy {
T &x;
Cb cb;
UpdateProxy(T &_x, Cb _cb) : x(_x), cb(_cb) {}
operator const T &() const { return x; }
auto &operator*() && { return x; }
auto operator->() && { return &x; }
auto operator++(int) && { T old = x; return ++x, cb(), old; }
auto operator--(int) && { T old = x; return --x, cb(), old; }
auto &operator++() && { ++x, cb(); return *this; }
auto &operator--() && { --x, cb(); return *this; }
auto &operator+=(const T &r) && { x += r, cb(); return *this; }
auto &operator-=(const T &r) && { x -= r, cb(); return *this; }
auto &operator*=(const T &r) && { x *= r, cb(); return *this; }
auto &operator/=(const T &r) && { x /= r, cb(); return *this; }
auto &operator%=(const T &r) && { x %= r, cb(); return *this; }
auto &operator=(const T &r) && { x = r, cb(); return *this; }
auto &operator<<=(const T &r) && { x <<= r, cb(); return *this; }
auto &operator>>=(const T &r) && { x >>= r, cb(); return *this; }
template<class F> auto &apply(F &&f) && { f(x), cb(); return *this; }
};
// clang-format on
#line 4 "ds/lazysegtree.hpp"
// M: T M::id(), F M::fid(), T op(T, T), F comp(F, F), bool map(F, &T)
template<class M> struct LazySegTree {
using T = typename M::T;
using F = typename M::F;
int n, lg, m;
vector<T> t;
vector<char> upd;
vector<F> lz;
LazySegTree() = default;
LazySegTree(int _n) :
n(_n), lg(_lg(n)), m(1 << lg), t(2 * m, M::id()), upd(m),
lz(m, M::fid()) {}
template<class G> LazySegTree(int _n, G &&gen) : LazySegTree(_n) {
for (int i = 0; i < n; i++) t[i + m] = gen(i);
for (int i = m; --i;) update(i);
}
template<class V>
LazySegTree(const V &v) :
LazySegTree((int)v.size(), [&](int i) { return T(v[i]); }) {}
vector<T> to_vec() {
vector<T> r(n);
for (int i = 0; i < n; i++) r[i] = (*this)[i];
return r;
}
void set(int p, const T &x) {
assert(0 <= p && p < n);
push_to(p), t[p + m] = x, update_from(p);
}
void mul(int p, const T &x) {
assert(0 <= p && p < n);
push_to(p), t[p + m] = M::op(t[p + m], x), update_from(p);
}
auto operator[](int p) {
assert(0 <= p && p < n);
UpdateProxy up(t[p + m], [this, p]() { update_from(p); });
return push_to(p), up;
}
T get(int p) { return (*this)[p]; }
T operator()(int l, int r) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return M::id();
int li = __builtin_ctz(l + m), ri = __builtin_ctz(r + m);
push_to(l, li), push_to(r - 1, ri);
T sml = M::id(), smr = M::id();
for (l += m, r += m; l < r; l >>= 1, r >>= 1) {
if (l & 1) sml = M::op(sml, t[l++]);
if (r & 1) smr = M::op(t[--r], smr);
}
return M::op(sml, smr);
}
T pref(int r) { return (*this)(0, r); }
T suff(int l) { return (*this)(l, n); }
T prod(int l, int r) { return (*this)(l, r); }
T all_prod() const { return t[1]; }
void apply(int p, const F &f) {
assert(0 <= p && p < n);
push_to(p), M::map(f, t[p + m]), update_from(p);
}
void apply(int l, int r, const F &f) {
assert(0 <= l && l <= r && r <= n);
if (l == r) return;
int li = __builtin_ctz(l + m), ri = __builtin_ctz(r + m);
push_to(l, li), push_to(r - 1, ri);
for (int l2 = l + m, r2 = r + m; l2 < r2; l2 >>= 1, r2 >>= 1) {
if (l2 & 1) all_apply(l2++, f);
if (r2 & 1) all_apply(--r2, f);
}
update_from(l, li), update_from(r - 1, ri);
}
template<class G> int max_right(int l, G &&g) {
assert(0 <= l && l <= n);
assert(g(M::id()));
if (l == n) return n;
push_to(l), l += m;
T sm = M::id();
do {
for (; l % 2 == 0; l >>= 1);
if (!g(M::op(sm, t[l]))) {
while (l < m) {
push(l), l = l << 1;
if (g(M::op(sm, t[l]))) sm = M::op(sm, t[l++]);
}
return l - m;
}
sm = M::op(sm, t[l++]);
} while ((l & -l) != l);
return n;
}
template<class G> int min_left(int r, G &&g) {
assert(0 <= r && r <= n);
assert(g(M::id()));
push_to(r - 1), r += m;
T sm = M::id();
do {
for (r--; r > 1 && r % 2; r >>= 1);
if (!g(M::op(t[r], sm))) {
while (r < m) {
push(r), r = r << 1 | 1;
if (g(M::op(t[r], sm))) sm = M::op(t[r--], sm);
}
return r + 1 - m;
}
sm = M::op(t[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
// clang-format off
static int _lg(int n) { int l = 0; while (1 << l < n) l++; return l; }
// clang-format on
void update(int p) { t[p] = M::op(t[p << 1], t[p << 1 | 1]); }
void update_from(int p, int l = 0) {
p += m;
for (int i = l + 1; i <= lg; i++) update(p >> i);
}
void all_apply(int p, const F &f) {
bool ok = M::map(f, t[p]);
assert(p < m || ok);
if (p < m) {
lz[p] = M::comp(f, lz[p]), upd[p] = true;
if (!ok) push(p), update(p);
}
}
void push(int p) {
if (!upd[p]) return;
all_apply(p << 1, lz[p]), all_apply(p << 1 | 1, lz[p]);
lz[p] = M::fid(), upd[p] = false;
}
void push_to(int p, int l = 0) {
p += m;
for (int i = lg; i >= l + 1; i--) push(p >> i);
}
};