This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "graph/scc.hpp"Finds strongly connected components (SCCs) in a directed graph using Tarjan’s algorithm. The algorithm runs in $\mathcal O(V + E)$ time.
find_scc(const G &g)
condense(const G &g)
(scc, rep, gd) where:
scc: vector of SCCs (same as find_scc)rep: mapping from vertex to its SCC indexgd: condensed DAG where each node represents an SCC#pragma once
template<class G> auto find_scc(const G &g) {
int n = (int)g.size();
vector<int> val(n), z;
vector<char> added(n);
vector<basic_string<int>> scc;
int time = 0;
auto dfs = [&](auto &self, int v) -> int {
int low = val[v] = time++;
z.push_back(v);
for (auto u : g[v])
if (!added[u]) low = min(low, val[u] ?: self(self, u));
if (low == val[v]) {
scc.emplace_back();
int x;
do {
x = z.back(), z.pop_back();
added[x] = true;
scc.back().push_back(x);
} while (x != v);
}
return val[v] = low;
};
for (int i = 0; i < n; i++)
if (!added[i]) dfs(dfs, i);
reverse(begin(scc), end(scc));
return scc;
}
template<class G> auto condense(const G &g) {
auto scc = find_scc(g);
int n = (int)scc.size();
vector<int> rep(g.size());
for (int i = 0; i < n; i++)
for (auto v : scc[i]) rep[v] = i;
vector<basic_string<int>> gd(n);
for (int v = 0; v < g.size(); v++)
for (auto u : g[v])
if (rep[v] != rep[u]) gd[rep[v]].push_back(rep[u]);
for (auto &v : gd) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
return make_tuple(move(scc), move(rep), move(gd));
}
#line 2 "graph/scc.hpp"
template<class G> auto find_scc(const G &g) {
int n = (int)g.size();
vector<int> val(n), z;
vector<char> added(n);
vector<basic_string<int>> scc;
int time = 0;
auto dfs = [&](auto &self, int v) -> int {
int low = val[v] = time++;
z.push_back(v);
for (auto u : g[v])
if (!added[u]) low = min(low, val[u] ?: self(self, u));
if (low == val[v]) {
scc.emplace_back();
int x;
do {
x = z.back(), z.pop_back();
added[x] = true;
scc.back().push_back(x);
} while (x != v);
}
return val[v] = low;
};
for (int i = 0; i < n; i++)
if (!added[i]) dfs(dfs, i);
reverse(begin(scc), end(scc));
return scc;
}
template<class G> auto condense(const G &g) {
auto scc = find_scc(g);
int n = (int)scc.size();
vector<int> rep(g.size());
for (int i = 0; i < n; i++)
for (auto v : scc[i]) rep[v] = i;
vector<basic_string<int>> gd(n);
for (int v = 0; v < g.size(); v++)
for (auto u : g[v])
if (rep[v] != rep[u]) gd[rep[v]].push_back(rep[u]);
for (auto &v : gd) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
return make_tuple(move(scc), move(rep), move(gd));
}