This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "tree/static_top_tree.hpp"Static top tree is a hierarchical decomposition of a static tree, which allows for efficient DP recomputation. For more information, please refer to AtCoder’s static top tree editorial
STT<G>(G &g)
#pragma once
#include "../other/y_combinator.hpp"
enum Type : char { Vertex, AddVertex, AddEdge, Compress, Rake };
template<class G> struct STT {
struct node {
Type t;
int p = -1, l, r;
node() {}
node(Type tp, int _l, int _r) : t(tp), l(_l), r(_r) {}
};
int rt;
G &g;
vector<node> vs;
STT(G &_g, int root = 0) : g(_g) {
int n = (int)g.size();
vs.assign(n, {Vertex, -1, -1});
vs.reserve(4 * n);
y_comb([&](auto &hld, int v) -> int {
int s = 1, mx = 0;
for (auto &c : g[v]) {
int sc = hld(c);
s += sc;
if (sc > mx) mx = sc, swap(g[v][0], c);
}
return s;
})(root);
rt = compress(root)[0];
vs.shrink_to_fit();
}
int size() const { return (int)vs.size(); }
auto &operator[](int i) const { return vs[i]; }
using P = array<int, 2>;
int add(int k, int l, int r, Type t) {
if (k == -1) {
k = (int)vs.size();
vs.emplace_back(t, l, r);
} else {
vs[k] = {t, l, r};
}
if (l != -1) vs[l].p = k;
if (r != -1) vs[r].p = k;
return k;
}
P merge(const vector<P> &a, Type t) {
if (a.size() == 1) return a[0];
int s = 0;
for (auto [v, sz] : a) s += sz;
vector<P> b, c;
for (auto x : a) (s > x[1] ? b : c).push_back(x), s -= 2 * x[1];
auto [l, szl] = merge(b, t);
auto [r, szr] = merge(c, t);
return {add(-1, l, r, t), szl + szr};
}
P compress(int v) {
vector<P> ch{add_vertex(v)};
while (g[v].size()) ch.push_back(add_vertex(v = g[v][0]));
return merge(ch, Compress);
}
P rake(int v) {
vector<P> ch;
for (int i = 1; i < g[v].size(); i++) ch.push_back(add_edge(g[v][i]));
return ch.size() ? merge(ch, Rake) : P{-1, 0};
}
P add_edge(int v) {
auto [u, sz] = compress(v);
return {add(-1, u, -1, AddEdge), sz};
}
P add_vertex(int v) {
auto [u, sz] = rake(v);
return {add(v, u, -1, u == -1 ? Vertex : AddVertex), sz + 1};
}
};
#line 2 "tree/static_top_tree.hpp"
#line 2 "other/y_combinator.hpp"
template<class F> struct y_comb_t : F {
template<class T> y_comb_t(T &&_f) : F(forward<T>(_f)) {}
template<class... Args> decltype(auto) operator()(Args &&...args) {
return F::operator()(/* ref */(*this), forward<Args>(args)...);
}
};
template<class F> y_comb_t<decay_t<F>> y_comb(F &&f) { return {forward<F>(f)}; }
#line 4 "tree/static_top_tree.hpp"
enum Type : char { Vertex, AddVertex, AddEdge, Compress, Rake };
template<class G> struct STT {
struct node {
Type t;
int p = -1, l, r;
node() {}
node(Type tp, int _l, int _r) : t(tp), l(_l), r(_r) {}
};
int rt;
G &g;
vector<node> vs;
STT(G &_g, int root = 0) : g(_g) {
int n = (int)g.size();
vs.assign(n, {Vertex, -1, -1});
vs.reserve(4 * n);
y_comb([&](auto &hld, int v) -> int {
int s = 1, mx = 0;
for (auto &c : g[v]) {
int sc = hld(c);
s += sc;
if (sc > mx) mx = sc, swap(g[v][0], c);
}
return s;
})(root);
rt = compress(root)[0];
vs.shrink_to_fit();
}
int size() const { return (int)vs.size(); }
auto &operator[](int i) const { return vs[i]; }
using P = array<int, 2>;
int add(int k, int l, int r, Type t) {
if (k == -1) {
k = (int)vs.size();
vs.emplace_back(t, l, r);
} else {
vs[k] = {t, l, r};
}
if (l != -1) vs[l].p = k;
if (r != -1) vs[r].p = k;
return k;
}
P merge(const vector<P> &a, Type t) {
if (a.size() == 1) return a[0];
int s = 0;
for (auto [v, sz] : a) s += sz;
vector<P> b, c;
for (auto x : a) (s > x[1] ? b : c).push_back(x), s -= 2 * x[1];
auto [l, szl] = merge(b, t);
auto [r, szr] = merge(c, t);
return {add(-1, l, r, t), szl + szr};
}
P compress(int v) {
vector<P> ch{add_vertex(v)};
while (g[v].size()) ch.push_back(add_vertex(v = g[v][0]));
return merge(ch, Compress);
}
P rake(int v) {
vector<P> ch;
for (int i = 1; i < g[v].size(); i++) ch.push_back(add_edge(g[v][i]));
return ch.size() ? merge(ch, Rake) : P{-1, 0};
}
P add_edge(int v) {
auto [u, sz] = compress(v);
return {add(-1, u, -1, AddEdge), sz};
}
P add_vertex(int v) {
auto [u, sz] = rake(v);
return {add(v, u, -1, u == -1 ? Vertex : AddVertex), sz + 1};
}
};